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NOMENClATURE 

B, Marangoni number 
e(T, -7&f. 

pv8 ’ 
d, 
LSIY@Z, 
h, 
K, 
L 
R, 

thickness of liquid layer; 
variables defined by equations (7)-(10); 
convective heat-transfer coefficient; 
thermal conductivity of liquid; 
Riot number [hd/K]; 
dimensionless heat generation parameter as 
defined by equations (1) and (2); 
time; 
temperature; 
perturbation temperature; 
perturbation velocity in y-direction; 
Cartesian coordinate system. 

Greek letters 

P> density of the liquid layer; 
a, thermal diffusivity of the liquid layer; 
r, kinematic viscosity of the liquid layer; 
e, wave number for the periodic fluctuations; 
[,t~, [, dimensionless x, y, z direction distance variables 

(x/d> y/d, 44 ; 
& ~rne~io~~s ratio of reaction film thickness to 

the actual thickness of the liquid layer; 
I-, parameter defined by equation (7); 
a, the rate of change of surface tension with 

temperature evaluated at gas-liquid interface 
tem~ature; 

Yt, Yif, variables defined by equations (16) and (17). 

INTRODUCTION 

WE CONSIDER in this commu~~~on the problem of surface 
tension driven convective instability in a liquid layer in 
which heat is generated in a thin layer near the gas-liquid 
interface due to either a radiation catalysed reaction or a 
zeroth order gas-liquid reaction. This practical case is 
interesting because it gives curious results for critical 
Marangom number for a stationary neutral stability curve. 
Furthermore, this problem leads to the analysis of surface- 
tension driven instability in the presence of a type of a 
non-linear temperature profile that has not been considered 
as yet. 

THEORY 

Steady state equations 
We consider a stationary liquid layer infinite in the 

horizontal x and z directions and in which a vertical distance 
y is measured from the gas-liquid interface, i.e. y = 0 

corresponds to the gas-liquid interface and y = d corre- 
sponds to the lower solid surface. The temperatures of the 
lower and upper surfaces are & and T2 respectively. Except 
for the heat generation in the reaction film, heat transfer in 
the liquid layer takes place by conduction. Under steady 
state conditions, the temperature distribution in the liquid 
depends only on y and this distribution can be shown as 

-=RE~$(I-RRE~)~ .s<n<l 
7i-T2 

(21 

where n = y/d, R = Sd2/2K(T, - T,), E is the dimensionl~s 
reaction film thickness; E = y,/d, y, being the dimensional 
reaction film thickness. S is the uniform rate of heat 
generation in the reaction film. Few typical temperature 
distributions when R > 0, are described in Fig. 1, 
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FIG. 1. Steady-statetemperaturedistributionfor heat source 
uniform over E = 05 Effect of R. 
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Small periurbation adysis 
Assuming that only surface-tension and temperature vary 

within the liquid layer; gas-liquid interface retains its planar 
state and that surface viscosity and elasticity effects are 
negligible, the relevant equations for small velocity and 
temperature perturbations are (1): 

a ( > -- 
at 

vv2 v2v =o 

a ( > dT --a7Jz T’= -o- 
at aY 

(4) 

v=o, pv$=av:T;; ’ -Kg=,, at y=o (5) 

where 

Y,(q) = f 
2 

coshatl+(C,h,-C,l\,)~coshatl 

rt C3& 
-(C,h,--&AZ)-sinhm+- 

2a2 
2a q* sinh a9 

c31\2 

+&TV ‘coshaq (17) 1 
it, = f-REZf2R~ (18) 

and 
(6) 

Y&) = (l-Rd) 

A2 = 2R (19) 

at y=d 

where I- is a constant, and 

v;=;+g. 

We assume infinitesimal perturbations v and T’ to be of 
the form 

and 

v = -i FE, Of(tt)eP’ (7) 

T’ = (r, - %)F(L i)&/)flep’ (8) 

which gives for stationary marginal state (p = 0). 

(D’-c.x~)~~=~, (D2-c&l = [(I-RE~+~RE)-~R~]/ 
for 0 c q < E (9) 

(0’ - a2)2f = 0, (D2 - a2)g2 = (1 - Re2)f 
for 6 <q < 1 (10) 

where c1 is related to F(c, 4) by the relation 
2 2 

~F+EF+~~F = 0 

a<* a<2 

with conditions 

f(l) = f’;l) = f(0) = 0 g’(O) = L&O), f”(0) = Bat@(O), 
either g(l) = 0 conducting case (12) 

or g’(1) = 0 insulating case 
and t&t&) = &(s); g;(s) = g;(s). 

Solution 
A solution for f(q) subjected to the condition (11) is 

S(q) = C, sinh aq + C2q sinh aq + C3q cash (IV 

where 

C2 (sinh a)(cosh a) 
-= 
c, 

-1; 
a (13) 

The soh~tions for g&f and gl(q) can be obtained as 

&I = B1 sinh aq+& cash ~+Y,(~) (1.5) 

gz(q) = Be sinhat) + II4 coshaq+ Y&) (16) 

xqcoshuq$ G TV smhatl+ (“) 2 . ] (20) 

where the constants B1 to B4 are obtained from conditions 
(12). The desired solution for’Marangoni number B is 

(21) 

Above solution gives B as a function of L, R, a and E. For 
a set of values of L, R and E, the ~~rnurn in B vs a plot 
represents the critical value of B. We briefly describe below 
the behavior of this &+th+ 

I 

FIG. 2. Variation of critical with E at various R. 
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FIG. 3. BCetical vs R at various E. 

RESULTS 

Consider first the case R > 0, L = 0. Figure 2 describes 
the typical effects of E and R on E,e~d for this case. These 
results appear reasonable in light of the work of Vidal and 
Acrivos [2] and due to the fact that in the limits E -+ 0, R 
finite and R + 0 Pearson’s [i] results are recovered. Figure 2 
shows that for constant R, BCidcsl vs E plot exhibits a 
maximum. This maximum is more predominant at higher 
values of R. It is interesting to note that the maximum 
always occurs at the point where the temperature gradient 
in the unperturbed state vanishes at the lower plate. The 
location of the maximum is thus defined by the expression 
.@R = 1. Similar types of curious results for &+a~ (s, R) 
were obtained for the case R c 0 (TI < T,, S > 0) and 
L = 0. This behavior is illustrated in Fig. 3. Although the 
results are described for the conducting case, almost identical 
results were obtained for the insulating case, Bcuacal for this 
case tends to infinity, as it should, when 1 R 1 + 1 l&s2 - 2s) 1. 

For I R I less than I l/(s2 -2s)[, dT’/dq would be negative at 
all q and hence Marangoni ins~b~ty is not possible, For 
small E, plots of BCdao,i vs R show curious humps. Since at 
large 1 R 1, dT/dn in the reaction film is almost independent 
of sign on R, Bcdticd(t) shown in Figs. 2 and 3 are almost 
identical at large I RI. 

Similar behavior of Bc~~eal(R,~) were observed for non- 
zero values of L. AS L increased, &tial(R. 8) was however, 
increased. 

The critical wave number (kri~dt) corresponding to 
&tit increased with a decrease in E at constant R. 
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